Coding/Statistical Analysis Skills
Languages and Libraries
- Python (Jupyter Notebook, Google Colab)
- Numpy
- Pandas
- Scikit-learn
- Matplotlib
- Seaborn
- Keras
- BeautifulSoup
- R (RStudio)
- GGplot2
- Dplyr
- Caret
- SQL (Microsoft SQL Server)
Machine Learning
- Supervised Learning
- Regression (Linear and Nonlinear)
- Decision Trees
- Random Forests
- XGBoost
- LightGBM
- Neural Networks
- Multilayer Perceptron
- K-Nearest Neighbors
- Support Vector Machine
- Unsupervised Learning
- Clustering
- KMeans
- Ensemble Learning
- Dimensionality Reduction/Principal Component Analysis
- Feature Selection/Creation
Statistical Analysis
- Descriptive Statistics
- Exploratory Data Analysis
- Regression Analysis (Linear and Nonlinear)
- Correlation/Covariance
- Z-Test
- T-Test
- F-Test
- ANOVA/ANCOVA
- Chi-squared test
- Wilcoxon Signed Rank Test
- Kruskal-Wallis Test
- Beginner SAS and SAS Studio skills
- Familiarity with Minitab